javascript tutorial - [Solved-5 Solutions] What is javascript’s highest integer value that a number can go to without losing precision ? - javascript - java script - javascript array



Problem:

Is this defined by the language? Is there a defined maximum ? Is it different in different browsers ?

Solution 1:

They are 64-bit floating point values, the largest exact integral value is 253-1, or 9007199254740991. In ES6, this is defined as Number MAX_SAFE_INTEGER. Note that the bitwise operators and shift operators operate on 32-bit ints, so in that case, the max safe integer is 231-1, or 2147483647. Test it out!

var x = 9007199254740992;
var y = -x;
x == x + 1; // true !
y == y - 1; // also true !
// Arithmetic operators work, but bitwise/shifts only operate on int32:
x / 2;      // 4503599627370496
x >> 1;     // 0
x | 1;      // 1

click below button to copy the code. By JavaScript tutorial team

Solution 2:

From the reference: alert([Number.MAX_VALUE, Number.MIN_VALUE]);

Solution 3:

It is 253 == 9 007 199 254 740 992. This is because Numbers are stored as floating-point in a 52-bit mantissa. The min value is -253. This makes some fun things happening

Math.pow(2, 53) == Math.pow(2, 53) + 1
>> true
click below button to copy the code. By JavaScript tutorial team

And can also be dangerous :)

var MAX_INT = Math.pow(2, 53); // 9 007 199 254 740 992
for (var we = MAX_INT; we < MAX_INT + 2; ++i) {
    // infinite loop
}

 
click below button to copy the code. By JavaScript tutorial team

Solution 4:

In javascript, there is a number called Infinity examples:

(Infinity>100)
=> true

//also worth noting
Infinity - 1 == Infinity
=> true

Math.pow(2,1024) === Infinity
=> true

click below button to copy the code. By JavaScript tutorial team

Solution 5:

ECMAScript 6:

Number.MAX_SAFE_INTEGER = Math.pow(2, 53)-1;
Number.MIN_SAFE_INTEGER = -Number.MAX_SAFE_INTEGER;

click below button to copy the code. By JavaScript tutorial team

Related Searches to javascript tutorial - What is javascript’s highest integer value that a number can go to without losing precision?