Given a directed graph and two vertices in it, source ‘s’ and destination ‘t’, find out the maximum number of edge disjoint paths from s to t. Two paths are said edge disjoint if they don’t share any edge.

 

There can be maximum two edge disjoint paths from source 0 to destination 7 in the above graph. Two edge disjoint paths are highlighted below in red and blue colors are 0-2-6-7 and 0-3-6-5-7.

 

Note that the paths may be different, but the maximum number is same. For example, in the above diagram, another possible set of paths is 0-1-2-6-7 and 0-3-6-5-7 respectively.

This problem can be solved by reducing it to maximum flow problem. Following are steps.
1) Consider the given source and destination as source and sink in flow network. Assign unit capacity to each edge.
2) Run Ford-Fulkerson algorithm to find the maximum flow from source to sink.
3) The maximum flow is equal to the maximum number of edge-disjoint paths.

When we run Ford-Fulkerson, we reduce the capacity by a unit. Therefore, the edge can not be used again. So the maximum flow is equal to the maximum number of edge-disjoint paths.

[ad type=”banner”]

Following is C++ implementation of the above algorithm. Most of the code is taken from here.

Python Programming:

# Python program to find maximum number of edge disjoint paths
# Complexity : (E*(V^3))
# Total augmenting path = VE
# and BFS with adj matrix takes :V^2 times

from collections import defaultdict

#This class represents a directed graph using
# adjacency matrix representation
class Graph:

def __init__(self,graph):
self.graph = graph # residual graph
self. ROW = len(graph)


'''Returns true if there is a path from source 's' to sink 't' in
residual graph. Also fills parent[] to store the path '''
def BFS(self,s, t, parent):

# Mark all the vertices as not visited
visited =[False]*(self.ROW)

# Create a queue for BFS
queue=[]

# Mark the source node as visited and enqueue it
queue.append(s)
visited[s] = True

# Standard BFS Loop
while queue:

#Dequeue a vertex from queue and print it
u = queue.pop(0)

# Get all adjacent vertices of the dequeued vertex u
# If a adjacent has not been visited, then mark it
# visited and enqueue it
for ind, val in enumerate(self.graph[u]):
if visited[ind] == False and val > 0 :
queue.append(ind)
visited[ind] = True
parent[ind] = u

# If we reached sink in BFS starting from source, then return
# true, else false
return True if visited[t] else False


# Returns tne maximum number of edge-disjoint paths from
#s to t in the given graph
def findDisjointPaths(self, source, sink):

# This array is filled by BFS and to store path
parent = [-1]*(self.ROW)

max_flow = 0 # There is no flow initially

# Augment the flow while there is path from source to sink
while self.BFS(source, sink, parent) :

# Find minimum residual capacity of the edges along the
# path filled by BFS. Or we can say find the maximum flow
# through the path found.
path_flow = float("Inf")
s = sink
while(s != source):
path_flow = min (path_flow, self.graph[parent[s]][s])
s = parent[s]

# Add path flow to overall flow
max_flow += path_flow

# update residual capacities of the edges and reverse edges
# along the path
v = sink
while(v != source):
u = parent[v]
self.graph[u][v] -= path_flow
self.graph[v][u] += path_flow
v = parent[v]

return max_flow


# Create a graph given in the above diagram

graph = [[0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0]]


g = Graph(graph)

source = 0; sink = 7

print ("There can be maximum %d edge-disjoint paths from %d to %d" %
(g.findDisjointPaths(source, sink), source, sink))


#This code is contributed by Neelam Yadav

Output:

There can be maximum 2 edge-disjoint paths from 0 to 7

Time Complexity: Same as time complexity of Edmonds-Karp implementation of Ford-Fulkerson

[ad type=”banner”]