A permutation, also called an “arrangement number” or “order,” is a rearrangement of the elements of an ordered list S into a one-to-one correspondence with S itself. A string of length n has n! permutation.
Source: Mathword(http://mathworld.wolfram.com/Permutation.html)

Below are the permutations of string ABC.
ABC ACB BAC BCA CBA CAB

Here is a solution that is used as a basis in backtracking.

java

 

 

 

Java
// Java program to print all permutations of a
// given string.
public class Permutation
{
public static void main(String[] args)
{
String str = "ABC";
int n = str.length();
Permutation permutation = new Permutation();
permutation.permute(str, 0, n-1);
}

/**
* permutation function
* @param str string to calculate permutation for
* @param l starting index
* @param r end index
*/
private void permute(String str, int l, int r)
{
if (l == r)
System.out.println(str);
else
{
for (int i = l; i <= r; i++)
{
str = swap(str,l,i);
permute(str, l+1, r);
str = swap(str,l,i);
}
}
}

/**
* Swap Characters at position
* @param a string value
* @param i position 1
* @param j position 2
* @return swapped string
*/
public String swap(String a, int i, int j)
{
char temp;
char[] charArray = a.toCharArray();
temp = charArray[i] ;
charArray[i] = charArray[j];
charArray[j] = temp;
return String.valueOf(charArray);
}

}

 

Output:

ABC
ACB
BAC
BCA
CBA
CAB


Algorithm Paradigm:
Backtracking
Time Complexity: O(n*n!) Note that there are n! permutations and it requires O(n) time to print a a permutation.

[ad type=”banner”]