A biconnected component is a maximal biconnected subgraph.

Biconnected Graph is already discussed here. In this article, we will see how to find biconnected component in a graph using algorithm by John Hopcroft and Robert Tarjan.

In above graph, following are the biconnected components:

  • 4–2 3–4 3–1 2–3 1–2
  • 8–9
  • 8–5 7–8 5–7
  • 6–0 5–6 1–5 0–1
  • 10–11

Algorithm is based on Disc and Low Values discussed in Strongly Connected Components Article.

Idea is to store visited edges in a stack while DFS on a graph and keep looking for Articulation Points (highlighted in above figure). As soon as an Articulation Point u is found, all edges visited while DFS from node u onwards will form one biconnected component. When DFS completes for one connected component, all edges present in stack will form a biconnected component.
If there is no Articulation Point in graph, then graph is biconnected and so there will be one biconnected component which is the graph itself.

[ad type=”banner”]

Java Programming:

// A Java program to find biconnected components in a given
// undirected graph
import java.io.*;
import java.util.*;
 
// This class represents a directed graph using adjacency
// list representation
class Graph
{
    private int V, E; // No. of vertices & Edges respectively
    private LinkedList<Integer> adj[];    // Adjacency List
 
    // Count is number of biconnected components. time is
    // used to find discovery times
    static int count = 0, time = 0;
 
    class Edge
    {
        int u;
        int v;
        Edge(int u, int v)
        {
            this.u = u;
            this.v = v;
        }
    };
 
    //Constructor
    Graph(int v)
    {
        V = v;
        E = 0;
        adj = new LinkedList[v];
        for (int i=0; i<v; ++i)
            adj[i] = new LinkedList();
    }
 
    //Function to add an edge into the graph
    void addEdge(int v,int w)
    {
        adj[v].add(w);
        E++;
    }
 
    // A recursive function that finds and prints strongly connected
    // components using DFS traversal
    // u --> The vertex to be visited next
    // disc[] --> Stores discovery times of visited vertices
    // low[] -- >> earliest visited vertex (the vertex with minimum
    //             discovery time) that can be reached from subtree
    //             rooted with current vertex
    // *st -- >> To store visited edges
    void BCCUtil(int u, int disc[], int low[], LinkedList<Edge>st,
                 int parent[])
    {
 
        // Initialize discovery time and low value
        disc[u] = low[u] = ++time;
        int children = 0;
 
        // Go through all vertices adjacent to this
        Iterator<Integer> it = adj[u].iterator();
        while (it.hasNext())
        {
            int v = it.next();  // v is current adjacent of 'u'
 
            // If v is not visited yet, then recur for it
            if (disc[v] == -1)
            {
                children++;
                parent[v] = u;
 
                // store the edge in stack
                st.add(new Edge(u,v));
                BCCUtil(v, disc, low, st, parent);
 
                // Check if the subtree rooted with 'v' has a
                // connection to one of the ancestors of 'u'
                // Case 1 -- per Strongly Connected Components Article
                if (low[u] > low[v])
                    low[u] = low[v];
 
                // If u is an articulation point,
                // pop all edges from stack till u -- v
                if ( (disc[u] == 1 && children > 1) ||
                        (disc[u] > 1 && low[v] >= disc[u]) )
                {
                    while (st.getLast().u != u || st.getLast().v != v)
                    {
                        System.out.print(st.getLast().u + "--" +
                                         st.getLast().v + " ");
                        st.removeLast();
                    }
                    System.out.println(st.getLast().u + "--" +
                                       st.getLast().v + " ");
                    st.removeLast();
 
                    count++;
                }
            }
 
            // Update low value of 'u' only of 'v' is still in stack
            // (i.e. it's a back edge, not cross edge).
            // Case 2 -- per Strongly Connected Components Article
            else if (v != parent[u] && disc[v] < low[u])
            {
                if (low[u]>disc[v])
                    low[u]=disc[v];
                st.add(new Edge(u,v));
            }
        }
    }
 
    // The function to do DFS traversal. It uses BCCUtil()
    void BCC()
    {
        int disc[] = new int[V];
        int low[] = new int[V];
        int parent[] = new int[V];
        LinkedList<Edge> st = new LinkedList<Edge>();
 
        // Initialize disc and low, and parent arrays
        for (int i = 0; i < V; i++)
        {
            disc[i] = -1;
            low[i] = -1;
            parent[i] = -1;
        }
 
        for (int i = 0; i < V; i++)
        {
            if (disc[i] == -1)
                BCCUtil(i, disc, low, st, parent);
 
            int j = 0;
 
            // If stack is not empty, pop all edges from stack
            while (st.size() > 0)
            {
                j = 1;
                System.out.print(st.getLast().u + "--" +
                                 st.getLast().v + " ");
                st.removeLast();
            }
            if (j == 1)
            {
                System.out.println();
                count++;
            }
        }
    }
 
    public static void main(String args[])
    {
        Graph g = new Graph(12);
        g.addEdge(0,1);
        g.addEdge(1,0);
        g.addEdge(1,2);
        g.addEdge(2,1);
        g.addEdge(1,3);
        g.addEdge(3,1);
        g.addEdge(2,3);
        g.addEdge(3,2);
        g.addEdge(2,4);
        g.addEdge(4,2);
        g.addEdge(3,4);
        g.addEdge(4,3);
        g.addEdge(1,5);
        g.addEdge(5,1);
        g.addEdge(0,6);
        g.addEdge(6,0);
        g.addEdge(5,6);
        g.addEdge(6,5);
        g.addEdge(5,7);
        g.addEdge(7,5);
        g.addEdge(5,8);
        g.addEdge(8,5);
        g.addEdge(7,8);
        g.addEdge(8,7);
        g.addEdge(8,9);
        g.addEdge(9,8);
        g.addEdge(10,11);
        g.addEdge(11,10);
 
        g.BCC();
 
        System.out.println("Above are " + g.count +
                           " biconnected components in graph");
    }
}
// This code is contributed by Aakash Hasija

Output:

4--2 3--4 3--1 2--3 1--2
8--9
8--5 7--8 5--7
6--0 5--6 1--5 0--1 
10--11
Above are 5 biconnected components in graph
[ad type=”banner”]