A biconnected component is a maximal biconnected subgraph.

Biconnected Graph is already discussed here. In this article, we will see how to find biconnected component in a graph using algorithm by John Hopcroft and Robert Tarjan.

In above graph, following are the biconnected components:

  • 4–2 3–4 3–1 2–3 1–2
  • 8–9
  • 8–5 7–8 5–7
  • 6–0 5–6 1–5 0–1
  • 10–11

Algorithm is based on Disc and Low Values discussed in Strongly Connected Components Article.

Idea is to store visited edges in a stack while DFS on a graph and keep looking for Articulation Points (highlighted in above figure). As soon as an Articulation Point u is found, all edges visited while DFS from node u onwards will form one biconnected component. When DFS completes for one connected component, all edges present in stack will form a biconnected component.
If there is no Articulation Point in graph, then graph is biconnected and so there will be one biconnected component which is the graph itself.

[ad type=”banner”]

C++ Programming:

// A C++ program to find biconnected components in a given undirected graph
#include<iostream>
#include <list>
#include <stack>
#define NIL -1
using namespace std;
int count = 0;
class Edge
{
public:
int u;
int v;
Edge(int u, int v);
};
Edge::Edge(int u, int v)
{
this->u = u;
this->v = v;
}

// A class that represents an directed graph
class Graph
{
int V; // No. of vertices
int E; // No. of edges
list<int> *adj; // A dynamic array of adjacency lists

// A Recursive DFS based function used by BCC()
void BCCUtil(int u, int disc[], int low[],
list<Edge> *st, int parent[]);
public:
Graph(int V); // Constructor
void addEdge(int v, int w); // function to add an edge to graph
void BCC(); // prints strongly connected components
};

Graph::Graph(int V)
{
this->V = V;
this->E = 0;
adj = new list<int>[V];
}

void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
E++;
}

// A recursive function that finds and prints strongly connected
// components using DFS traversal
// u --> The vertex to be visited next
// disc[] --> Stores discovery times of visited vertices
// low[] -- >> earliest visited vertex (the vertex with minimum
// discovery time) that can be reached from subtree
// rooted with current vertex
// *st -- >> To store visited edges
void Graph::BCCUtil(int u, int disc[], int low[], list<Edge> *st,
int parent[])
{
// A static variable is used for simplicity, we can avoid use
// of static variable by passing a pointer.
static int time = 0;

// Initialize discovery time and low value
disc[u] = low[u] = ++time;
int children = 0;

// Go through all vertices adjacent to this
list<int>::iterator i;
for (i = adj[u].begin(); i != adj[u].end(); ++i)
{
int v = *i; // v is current adjacent of 'u'

// If v is not visited yet, then recur for it
if (disc[v] == -1)
{
children++;
parent[v] = u;
//store the edge in stack
st->push_back(Edge(u,v));
BCCUtil(v, disc, low, st, parent);

// Check if the subtree rooted with 'v' has a
// connection to one of the ancestors of 'u'
// Case 1 -- per Strongly Connected Components Article
low[u] = min(low[u], low[v]);

//If u is an articulation point,
//pop all edges from stack till u -- v
if( (disc[u] == 1 && children > 1) ||
(disc[u] > 1 && low[v] >= disc[u]) )
{
while(st->back().u != u || st->back().v != v)
{
cout << st->back().u << "--" << st->back().v << " ";
st->pop_back();
}
cout << st->back().u << "--" << st->back().v;
st->pop_back();
cout << endl;
count++;
}
}

// Update low value of 'u' only of 'v' is still in stack
// (i.e. it's a back edge, not cross edge).
// Case 2 -- per Strongly Connected Components Article
else if(v != parent[u] && disc[v] < low[u])
{
low[u] = min(low[u], disc[v]);
st->push_back(Edge(u,v));
}
}
}

// The function to do DFS traversal. It uses BCCUtil()
void Graph::BCC()
{
int *disc = new int[V];
int *low = new int[V];
int *parent = new int[V];
list<Edge> *st = new list<Edge>[E];

// Initialize disc and low, and parent arrays
for (int i = 0; i < V; i++)
{
disc[i] = NIL;
low[i] = NIL;
parent[i] = NIL;
}

for (int i = 0; i < V; i++)
{
if (disc[i] == NIL)
BCCUtil(i, disc, low, st, parent);

int j = 0;
//If stack is not empty, pop all edges from stack
while(st->size() > 0)
{
j = 1;
cout << st->back().u << "--" << st->back().v << " ";
st->pop_back();
}
if(j == 1)
{
cout << endl;
count++;
}
}
}

// Driver program to test above function
int main()
{
Graph g(12);
g.addEdge(0,1);g.addEdge(1,0);
g.addEdge(1,2);g.addEdge(2,1);
g.addEdge(1,3);g.addEdge(3,1);
g.addEdge(2,3);g.addEdge(3,2);
g.addEdge(2,4);g.addEdge(4,2);
g.addEdge(3,4);g.addEdge(4,3);
g.addEdge(1,5);g.addEdge(5,1);
g.addEdge(0,6);g.addEdge(6,0);
g.addEdge(5,6);g.addEdge(6,5);
g.addEdge(5,7);g.addEdge(7,5);
g.addEdge(5,8);g.addEdge(8,5);
g.addEdge(7,8);g.addEdge(8,7);
g.addEdge(8,9);g.addEdge(9,8);
g.addEdge(10,11);g.addEdge(11,10);
g.BCC();
cout << "Above are " << count << " biconnected components in graph";
return 0;
}

Output:

4--2 3--4 3--1 2--3 1--2
8--9
8--5 7--8 5--7
6--0 5--6 1--5 0--1 
10--11
Above are 5 biconnected components in graph
[ad type=”banner”]