An undirected graph is called Biconnected if there are two vertex-disjoint paths between any two vertices. In a Biconnected Graph, there is a simple cycle through any two vertices.
By convention, two nodes connected by an edge form a biconnected graph, but this does not verify the above properties. For a graph with more than two vertices, the above properties must be there for it to be Biconnected.
[ad type=”banner”]
Following are some examples.
How to find if a given graph is Biconnected or not?
A connected graph is Biconnected if it is connected and doesn’t have any Articulation Point. We mainly need to check two things in a graph.
1) The graph is connected.
2) There is not articulation point in graph.
We start from any vertex and do DFS traversal. In DFS traversal, we check if there is any articulation point. If we don’t find any articulation point, then the graph is Biconnected. Finally, we need to check whether all vertices were reachable in DFS or not. If all vertices were not reachable, then the graph is not even connected.
Following is C++ implementation of above approach.
#include<iostream>
#include <list>
#define NIL -1
using namespace std;
class Graph
{
int V;
list<int> *adj;
bool isBCUtil(int v, bool visited[], int disc[], int low[],
int parent[]);
public:
Graph(int V);
void addEdge(int v, int w);
bool isBC();
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
adj[w].push_back(v);
}
bool Graph::isBCUtil(int u, bool visited[], int disc[],int low[],int parent[])
{
static int time = 0;
int children = 0;
visited[u] = true;
disc[u] = low[u] = ++time;
list<int>::iterator i;
for (i = adj[u].begin(); i != adj[u].end(); ++i)
{
int v = *i;
if (!visited[v])
{
children++;
parent[v] = u;
if (isBCUtil(v, visited, disc, low, parent))
return true;
low[u] = min(low[u], low[v]);
if (parent[u] == NIL && children > 1)
return true;
if (parent[u] != NIL && low[v] >= disc[u])
return true;
}
else if (v != parent[u])
low[u] = min(low[u], disc[v]);
}
return false;
}
bool Graph::isBC()
{
bool *visited = new bool[V];
int *disc = new int[V];
int *low = new int[V];
int *parent = new int[V];
for (int i = 0; i < V; i++)
{
parent[i] = NIL;
visited[i] = false;
}
if (isBCUtil(0, visited, disc, low, parent) == true)
return false;
for (int i = 0; i < V; i++)
if (visited[i] == false)
return false;
return true;
}
int main()
{
Graph g1(2);
g1.addEdge(0, 1);
g1.isBC()? cout << "Yes\n" : cout << "No\n";
Graph g2(5);
g2.addEdge(1, 0);
g2.addEdge(0, 2);
g2.addEdge(2, 1);
g2.addEdge(0, 3);
g2.addEdge(3, 4);
g2.addEdge(2, 4);
g2.isBC()? cout << "Yes\n" : cout << "No\n";
Graph g3(3);
g3.addEdge(0, 1);
g3.addEdge(1, 2);
g3.isBC()? cout << "Yes\n" : cout << "No\n";
Graph g4(5);
g4.addEdge(1, 0);
g4.addEdge(0, 2);
g4.addEdge(2, 1);
g4.addEdge(0, 3);
g4.addEdge(3, 4);
g4.isBC()? cout << "Yes\n" : cout << "No\n";
Graph g5(3);
g5.addEdge(0, 1);
g5.addEdge(1, 2);
g5.addEdge(2, 0);
g5.isBC()? cout << "Yes\n" : cout << "No\n";
return 0;
}
Output:
Yes
Yes
No
No
Yes
[ad type=”banner”]