A biconnected component is a maximal biconnected subgraph.

Biconnected Graph is already discussed here. In this article, we will see how to find biconnected component in a graph using algorithm by John Hopcroft and Robert Tarjan.

In above graph, following are the biconnected components:

  • 4–2 3–4 3–1 2–3 1–2
  • 8–9
  • 8–5 7–8 5–7
  • 6–0 5–6 1–5 0–1
  • 10–11

Algorithm is based on Disc and Low Values discussed in Strongly Connected Components Article.

Idea is to store visited edges in a stack while DFS on a graph and keep looking for Articulation Points (highlighted in above figure). As soon as an Articulation Point u is found, all edges visited while DFS from node u onwards will form one biconnected component. When DFS completes for one connected component, all edges present in stack will form a biconnected component.
If there is no Articulation Point in graph, then graph is biconnected and so there will be one biconnected component which is the graph itself.

[ad type=”banner”]

Java Programming:

// A Java program to find biconnected components in a given
// undirected graph
import java.io.*;
import java.util.*;

// This class represents a directed graph using adjacency
// list representation
class Graph
{
private int V, E; // No. of vertices & Edges respectively
private LinkedList<Integer> adj[]; // Adjacency List

// Count is number of biconnected components. time is
// used to find discovery times
static int count = 0, time = 0;

class Edge
{
int u;
int v;
Edge(int u, int v)
{
this.u = u;
this.v = v;
}
};

//Constructor
Graph(int v)
{
V = v;
E = 0;
adj = new LinkedList[v];
for (int i=0; i<v; ++i)
adj[i] = new LinkedList();
}

//Function to add an edge into the graph
void addEdge(int v,int w)
{
adj[v].add(w);
E++;
}

// A recursive function that finds and prints strongly connected
// components using DFS traversal
// u --> The vertex to be visited next
// disc[] --> Stores discovery times of visited vertices
// low[] -- >> earliest visited vertex (the vertex with minimum
// discovery time) that can be reached from subtree
// rooted with current vertex
// *st -- >> To store visited edges
void BCCUtil(int u, int disc[], int low[], LinkedList<Edge>st,
int parent[])
{

// Initialize discovery time and low value
disc[u] = low[u] = ++time;
int children = 0;

// Go through all vertices adjacent to this
Iterator<Integer> it = adj[u].iterator();
while (it.hasNext())
{
int v = it.next(); // v is current adjacent of 'u'

// If v is not visited yet, then recur for it
if (disc[v] == -1)
{
children++;
parent[v] = u;

// store the edge in stack
st.add(new Edge(u,v));
BCCUtil(v, disc, low, st, parent);

// Check if the subtree rooted with 'v' has a
// connection to one of the ancestors of 'u'
// Case 1 -- per Strongly Connected Components Article
if (low[u] > low[v])
low[u] = low[v];

// If u is an articulation point,
// pop all edges from stack till u -- v
if ( (disc[u] == 1 && children > 1) ||
(disc[u] > 1 && low[v] >= disc[u]) )
{
while (st.getLast().u != u || st.getLast().v != v)
{
System.out.print(st.getLast().u + "--" +
st.getLast().v + " ");
st.removeLast();
}
System.out.println(st.getLast().u + "--" +
st.getLast().v + " ");
st.removeLast();

count++;
}
}

// Update low value of 'u' only of 'v' is still in stack
// (i.e. it's a back edge, not cross edge).
// Case 2 -- per Strongly Connected Components Article
else if (v != parent[u] && disc[v] < low[u])
{
if (low[u]>disc[v])
low[u]=disc[v];
st.add(new Edge(u,v));
}
}
}

// The function to do DFS traversal. It uses BCCUtil()
void BCC()
{
int disc[] = new int[V];
int low[] = new int[V];
int parent[] = new int[V];
LinkedList<Edge> st = new LinkedList<Edge>();

// Initialize disc and low, and parent arrays
for (int i = 0; i < V; i++)
{
disc[i] = -1;
low[i] = -1;
parent[i] = -1;
}

for (int i = 0; i < V; i++)
{
if (disc[i] == -1)
BCCUtil(i, disc, low, st, parent);

int j = 0;

// If stack is not empty, pop all edges from stack
while (st.size() > 0)
{
j = 1;
System.out.print(st.getLast().u + "--" +
st.getLast().v + " ");
st.removeLast();
}
if (j == 1)
{
System.out.println();
count++;
}
}
}

public static void main(String args[])
{
Graph g = new Graph(12);
g.addEdge(0,1);
g.addEdge(1,0);
g.addEdge(1,2);
g.addEdge(2,1);
g.addEdge(1,3);
g.addEdge(3,1);
g.addEdge(2,3);
g.addEdge(3,2);
g.addEdge(2,4);
g.addEdge(4,2);
g.addEdge(3,4);
g.addEdge(4,3);
g.addEdge(1,5);
g.addEdge(5,1);
g.addEdge(0,6);
g.addEdge(6,0);
g.addEdge(5,6);
g.addEdge(6,5);
g.addEdge(5,7);
g.addEdge(7,5);
g.addEdge(5,8);
g.addEdge(8,5);
g.addEdge(7,8);
g.addEdge(8,7);
g.addEdge(8,9);
g.addEdge(9,8);
g.addEdge(10,11);
g.addEdge(11,10);

g.BCC();

System.out.println("Above are " + g.count +
" biconnected components in graph");
}
}
// This code is contributed by Aakash Hasija

Output:

4--2 3--4 3--1 2--3 1--2
8--9
8--5 7--8 5--7
6--0 5--6 1--5 0--1 
10--11
Above are 5 biconnected components in graph
[ad type=”banner”]