Pigeonhole sorting is a sorting algorithm that is suitable for sorting lists of elements where the number of elements and the number of possible key values are approximately the same.
It requires O(n + Range) time where n is number of elements in input array and ‘Range’ is number of possible values in array.
Working of Algorithm :
- Find minimum and maximum values in array. Let the minimum and maximum values be ‘min’ and ‘max’ respectively. Also find range as ‘max-min-1’.
- Set up an array of initially empty “pigeonholes” the same size as of the range.
- Visit each element of the array and then put each element in its pigeonhole. An element arr[i] is put in hole at index arr[i] – min.
- Start the loop all over the pigeonhole array in order and put the elements from non- empty holes back into the original array.
Comparison with Counting Sort :
It is similar to counting sort, but differs in that it “moves items twice: once to the bucket array and again to the final destination “
Below is C++ implementation of Pegionhole Sort.
Output:
Sorted order is : 2 3 4 6 7 8 8
Pigeonhole sort has limited use as requirements are rarely met. For arrays where range is much larger than n, bucket sort is a generalization that is more efficient in space and time.
[ad type=”banner”]